
Story Map Concepts
Use simple maps to visualize the stories you tell
about your software

Users
A map tells a story about a type of
person doing something to reach a
goal. Make sure to include them in
your map along with a little
information about them.

Try using lightweight persona
sketches to describe your users.

User Tasks
User’s tasks are short verb phrases
that are the basic building block of a
map. If I ask you what you did
earlier today when using email,
you’ll likely respond with tasks like:
•  Read an email message
•  Respond to a message
•  Mark a message as spam

Activities
Activities organize tasks done by
similar people at similar times to
reach a goal. For your email
software activities might include
•  Going through my inbox
•  Configuring my email client
•  Organizing messages into folders

Narrative Flow
The left to right axis in a story map
is organized in the order you’d tell
the story about your user to
someone else.

Of course any specific user might
choose to do different things in a
different order. Use conversation to
explain the details and variations.

If you’re looking for the precision
of a workflow model, flow chart,
or UML model, then a story map
isn’t your best choice.

A story map will take lots of
conversation to use effectively. But
then that’s the purpose of stories.

Release Slice
Use a tape line to identify slices of tasks that users might use your software
for to reach their goals. The smallest number of tasks that allow your
specific target users to reach their goal compose a viable product release.

Use release slices to identify small experiments, minimal viable
product releases, or a “walking skeleton” version of your product.

Identify the target outcomes of your slice in a sticky note or card to the left
of the slice.

Goal-Level
The actions that users take in order
to reach their larger goals have a
goal level themselves that’s tied to
user behavior.

Summary: lots of tasks done in
support of a bigger goal.

Functional: I’d expect to complete
this task before taking a break.

Sub-Functional: smaller things
done in support of a bigger tasks.

As you read across tasks in the
backbone, check to make sure
that tasks are of a similar goal
level.

Backbone
Activities and tasks at a higher goal
level give the story map it’s
structure. The backbone is
arranged in a narrative flow. Smaller
sub-tasks, details and variations
hang down to form the ribs
connected to the backbone.

Details, Details...
Break down high goal level tasks into:
•  Sub-tasks
•  Alternative tasks
•  Exceptions
•  Details

Down in the details of the map, it’s OK to
include details about what UI might look like or
what the system might do in the background.

Map the Whole System
Map a whole process as it crosses through a number of types of users

Story maps are for looking at the big picture

User Tasks make

great story titles!

Write short verb phrases on cards or stickies.

Use them later as your story titles. If you use the

story template to write descriptions, the task fits

nicely right after “I want to,” the activity fits nicely

right after “so that…”

©2013 Comakers LLC, www.comakewith.us, youshould@comakewith.us for more info

©	 2009-‐2012	 Comakers	 LLC,	 www.comakewith.us	

Map Now & Later
Use a map to describe the world as it is today. Inject pains, joys and rewards,
details and observations, and solution ideas.

Evolve the map using design and discovery to describe the behavior you
expect users to have in the future.

Story maps are for understanding now, and imagining later.

Story Map Process
The story map evolves with your understanding of
your users and your product solution

1! Frame
Before mapping, create a short product or
feature brief to frame and constrain what you
map. Think of this as the big story.

Focus on getting the whole story. Think “mile-
wide, inch deep” The activities and high-level user
tasks that tell the whole story form the backbone
of your story map.

Start with the user type most critical to your
product’s success. Imagine a typical day in
your user’s life with your new product. Map the
steps they take as user tasks left to right.

Fill the body of your story map by breaking
down larger user tasks into smaller subtasks and
user interface details. During this phase you’ll add
cards, split one card into two, rewrite cards, and
reorganize them.

Use this phase to think “blue sky” about all the
great possibilities. Use this time to think of
everything that could go wrong. Don’t worry if
your ideas are “in or out of scope.” You’ll
deliberately move things out of scope later.

Slice your map into holistic product releases
that span the users and use of the product.
These slices form an incremental product release
roadmap where each release is a minimal viable
product release.

Slice the first release of your map into three or
more delivery phases that allow you and your
team to learn fast and avoid risk. Think of the
opening, mid, and end-game phases of a chess
game.

This development strategy will help you release
the best product possible in the time constraints
you have.

2! Map the Big Picture

3! Explore
4! Slice Out Experiments

4! Slice Out Viable Releases

5! Slice Out a Development Strategy

Why describes the benefit your organization gets
by building the product or feature. Say what
users do and how their use leads to increased
revenue or reduced costs.

Identify user activities – groups of tasks that
work together to support a common goal.
Activities often emerge after you see more of the
story. !

Add in additional users. As you follow the
typical use of your product, you may find other
types of users enter your story. Continue
modeling their story left to right.

•  Play “wouldn’t it be cool if...” to help think of
great product ideas.
•  Look for variations: What else might users of

the system have done?
•  Look for exceptions: What could go wrong,

and what would the user have to do to recover?
•  Consider other users: What might other types

of users do to reach their goals?
•  Add in other product details like: Description

of proposed UI; Business rules; Data elements

Involve others. Tell your product’s story to others
that understand users and use. They’ll find holes
in your story and help build it up. Tell your
product’s story to software developers. They’ll
point out risky or expensive areas, and add in
great technology solutions.

For each release name the target outcomes
and Impact. Outcomes and impact says how
this release contributes to the overall goal in the
“big why” that motivates building the product, and
how users will behave in a way that helps us
reach the goal.

For each release, identify product success
metrics. Answer the question: “what would we
measure to determine if this product was
successful?” Ideally you’ll find specific changes in
user’s behavior as they use the product the way
your story map imagines.

•  Opening Game builds a “functional walking
skeleton” – the simplest possible functional
version of the product. As you finish "Opening
game" vet the product with users and other
stakeholders. Begin validating performance and
scalability.

•  Mid Game complete all major functionality
and makes existing functionality richer and more
complete. Continue user testing and leverage
feedback to adjust the product. Continue
testing performance and scalability.

•  End Game refines the product in preparation
for release. Continuously assess release
readiness based on your release level product
goals. Count on unforeseen work to emerge
during this last stretch of development.

What names the product, feature to add to a
product, or problem you’d like to solve.

Who names the different types of users who will
use the product, and the “chooser” or customers
who will buy it. For each user and chooser state
the benefit they get from using the product.

Plan the work necessary to refine stories.!

Workshop stories with developers and testers
to work through details and agree on
acceptance criteria.!

Plan development and testing.!

Build and verify parts of working software.

